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ABSTRACT 

 A theory combining nonlinear continuum elasticity, inelasticity, thermodynamics, 
damage mechanics, and fragmentation is formulated.  The model is applied to study concrete 
subjected to high rate loading as occurs during ballistic impact.  Two thermodynamically 
motivated methods are postulated within this theoretical framework for quantitatively 
characterizing the mass and velocity distributions of the post-impact debris field, one based 
upon a local energy balance and a second following global entropy maximization.  Here the 
concrete, a composite mixture of mortar and granite aggregate, is regarded as a homogeneous 
continuum prior to fragmentation.  However, the composite nature of the microstructure 
directly influences model parameters dictating the mean fragment dimension, here 
specifically related to the coarse aggregate size. Standard continuum elements represent the 
intact solid and particles describe eroded material in numerical implementation of the model.  
The impact of a metal sphere on a thin concrete target, and the subsequent motion of the 
resulting cloud of concrete fragment debris, are simulated.  Fragment size, speed, and kinetic 
energy statistics predicted by the two methods are compared.   

Keywords: damage mechanics, thermodynamics, fragmentation, concrete. 
 
1. INTRODUCTION 

 Urban structural materials such as concrete, mortar, and cinder block may undergo 
complex set of deformation mechanisms when subjected to impact loading.  Since they 
nominally contain significant initial porosity, for example on the order of 10-20% in 
standardized concretes [1, 2], these materials are labeled here as 'crushable'.   The goal of the 
present study is development and implementation of a kinematically and thermodynamically 
self-consistent theory accounting for coupled deformation, damage, and fragmentation 
mechanisms, specifically amenable to brittle crushable solids.  In such materials, initial 
porosity induces pressure dependence in the effective bulk modulus, with the stiffness of the 
material increasing as the pores are compacted.  Additional difficulty in precisely modeling 
concrete behavior follows from the variability in mechanical properties such as flow stress 
and fracture toughness with microstructure constituents [3], processing conditions, and age.   
 Previous modeling approaches most relevant to the present work are mentioned here.  
Holmquist et al. [4] developed a constitutive model, with the pressure-volume response 
following data from  [1], and a plasticity and damage framework similar, yet not identical, to 
one used previously for metallic materials [5], with failure criteria based on cumulative strain 
measures [6]. The numerical approach followed here is that of Johnson et al. [7, 8], whereby 
continuum finite elements are converted via a Generalized Particle Algorithm (GPA) to 
particle nodes when specified erosion criteria are met.  However, information regarding sizes 
of individual fragments has not historically been available from Smooth Particle 
Hydrodynamics (SPH) or GPA, since the mass of each particle is simply the nodal mass, 
which in turn depends upon the mesh density.  The issue is resolved here by incorporating 
thermodynamics-based fragmentation theory into the constitutive framework enabling 
calculation of non-uniform mass distributions.   
 Two methods are derived in the present work for calculating fragment size and 
velocity distributions, both compatible with the laws of thermodynamics and momentum 
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conservation.  The first follows from on a local energy balance similar to that of Grady [9] 
and Johnson & Cook [10], but newly applied to the class of concrete-like materials in a 
manner more consistent with the bulk constitutive model.  The distribution of fragment 
masses is found in practice via consideration of an energy balance with regards to the 
deformation history of converted particles in the simulation, with the velocity distribution of 
the fragments associated with that of the parent particles.  In the second approach, a theory 
based on entropy maximization and classical statistical physics is implemented [11, 12].  In 
this approach, a new joint probability distribution function for fragment mass and velocity is 
derived consistent with energy and linear momentum conservation 
 The following notation applies.  Cartesian coordinates are used throughout, with 
summation implied over repeated indices.  Vectors and tensor quantities are represented with 
boldface type, while scalars and individual components of tensors are written in italics.  
Juxtaposition implies summation over two repeated adjacent indices (e.g. ( ) .b cb

aca
A B=AB ).  

The scalar product of vectors is represented by “ ” (e.g. ).  The colon denotes 

contraction over repeated pairs of indices (e.g. 

i a
aa b=a bi

( )tr T
ab

abA B= =A : B A B , where 'tr' is the 

trace operation, and ). Superposed -1, T, and “ i” denote inverse, transpose, 
and material time derivative, respectively.  

abcd
cdC A=C : A

 
2.  CONTINUUM THERMOMECHANICS 

 The theoretical framework postulated here differs from many existing models in its 
implementation of a multiplicative decomposition of the deformation gradient into elastic and 
inelastic components [13] and its strict consistency with the balance laws of continuum 
mechanics and thermodynamics.  More specifically, thermodynamic relations and evolution 
equations for porosity and damage are formulated in the spirit of Coleman & Noll [14] and 
Coleman & Gurtin [15].     

The deformation gradient F is split multiplicatively as 
 

 =∂ ∂ = E DF x X F F ,             . .
a a A E a D

.A AF x X F F α
α= ∂ ∂ = ,      (1) 

where x and X are spatial and reference coordinates in three dimensional Cartesian space,  
is the recoverable elastic deformation, and  is the irreversible deformation associated with 
defects such as micro-cracks and voids within the material.  Deformation maps and 
corresponding material configurations corresponding to Eq. (1) are depicted in Fig. 1.  The 
velocity gradient L follows as 

EF
DF

 
 1 1 1− − −= ∂ ∂ = +

E D

E E E D D E

L L

L x x F F F F F F . (2) 

Irreversible volumetric deformation associated with pore collapse in crushable materials is 
described by  

 ,                 , (3) 1 1DJϕ −= − detDJ = DF

where ϕ  is the volume reduction upon crushing, positive when the volume is reduced.  The 
total inelastic velocity gradient from (2) then becomes 
 

 , (4) ( ) 11 1 ˆ 1ϕ ϕ −− −= = − +D E D D E DL F F F F L 1
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where  is the deviatoric inelastic velocity gradient in spatial configuration B and 1 is the 
identity tensor.  An elastic strain tensor and a scalar measure of volumetric elastic strain in 
the intermediate configuration 

ˆDL

B  of Fig. 1 are defined, respectively, as 
 

 ,               . (5) 2 T=E E EE F F 1− trEϑ = EE

Standard balances of mass, linear and angular momentum are written in localized form as 

 0 detJρ ρ ρ= = F ,             div ρ+ =σ f x

iv

,                , (6) T=σ σ

where f is the body force vector per unit spatial volume, σ  is the Cauchy stress tensor, and 
div denotes divergence in the spatial frame.   The local spatial energy balance is  
 

 e dρ = −σ : L q , (7) 

with e the internal energy per unit mass and q the heat flux.   The local second law of 
thermodynamics is written  

 ( )1θ θ ρ ψ θη−− ∂ ≥ +xσ : L qi , (8) 

where θ  is the absolute temperature, η  is the specific entropy per unit mass, and the 
Helmholtz free energy is eψ θη= − .  The spatial gradient operator is denoted by . ∂x

 The Helmholtz free energy, on a per unit mass basis, exhibits the following functional 
form: 

 ( ), , , Dψ ψ ϕ θ= EE , (9) 

where D is a scalar internal state variable representing cumulative damage.  Stress-strain and 
temperature-entropy relations are then deduced as  
 

 ψρ ∂
=

∂
E

Eσ F
E

ETF ,            ψη ρ
θ

∂
= −

∂
.            (10) 

The dissipation inequality (8) is then given by 
 

 1ˆ:
1

p D
D

ψ ψρ ϕ ρ θ θ
ϕ ϕ

−⎛ ⎞∂ ∂
+ − − ≥ ∂⎜ ⎟+ ∂ ∂⎝ ⎠

D
xσ L iq

r

2/

, (11) 

 
where the Cauchy pressure .  Assuming isotropic heat conduction in the spatial 
frame, i.e. , with  the scalar thermal conductivity, and defining the specific heat 
parameter 

3 tp = − σ
κ θ= − ∂xq κ

2ˆ /c e θ θ ψ θ= ∂ ∂ = − ∂ ∂ , the energy balance can be written as 
 

(
2 2

ˆ :c D
D D

ψ ψ ψ ψ ψ )divρ θ ρ θ ϕ θ θ κ
ϕ θ ϕ θ θ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
= − − − − + + ∂⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎣ ⎦

D E
xEσ L :

E
θE .     (12) 

 
  In the present class of urban structural materials (e.g. concrete, mortar)  is 
associated with micro-crack opening and sliding, as well as pore collapse during 
compression.  Let 

DF

ω  represent the cumulative local micro-cracked area per unit intermediate 
volume.  Further, let / cD ω ω= , where cω  is a material parameter denoting the maximum 
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sustainable crack density, and constrained by the restriction 0 D 1≤ ≤ .  The specific free 
energy density is more specifically formulated as 
 

 ( ) ( ) ( ) ( )2 ˆ ˆ, 1E EK G D D Yρψ ϑ ϕ ϑ Γ= + − + +E EE : E θ , (13) 

where EJρ ρ= , K  is the effective bulk modulus, G is the initial shear modulus, 
 is the elastic strain deviator, ( )ˆ / 3Eϑ= −E EE E 1 Γ  accounts for energy of micro-cracks, and 

Y describes the specific heat content.  In particular, the effective bulk modulus takes the form 
 

 2
1 2 3

1 1 1 1
2 2 3 4

L
E E

L L

K K K K Kϕ ϕ
E

ϕϑ ϑ
ϕ ϕ

⎛ ⎞− ⎛= + + +⎜ ⎟ ⎜
⎝ ⎠⎝ ⎠

⎞
⎟ , (14) 

 where  is the initial elastic bulk modulus, EK Lϕ  is the maximum porosity reduction due to 
compressive pressure, and , , and  determine the pressure-volume relationship for 
the fully dense material at locking, when 

1K 2K 3K

Lϕ ϕ= .  The microcrack energy per unit volume is  
 

 ( )2 / 2C C EK K DΓ γω ω− = = , (15) 

where 2 / 2C EK Kγ =  is the surface energy of fracture [16], with  the effective fracture 
toughness.  Note that constant material properties are used in (15) as a first approximation.  

CK

 The intermediate second Piola stress is given, following from (10), by 

 1EJ Tψρ − −∂
= =

∂
E E

ES F σF
E

. (16) 

Then from (13) and (14), respectively, hydrostatic and deviatoric parts of S are  
 

 ( ) ( )2 3
1 2 3tr / 3 / /E E L L E E E Lp K K K Kϑ ϕ ϕ ϕ ϑ ϑ ϑ ϕ ϕ= − = − − − + +S ,            (17) 

 ( )ˆ ˆ2 1p D G= + = − ES S 1 E . (18) 

The Cauchy pressure is 1
.3 E Ea E

ap tr J F S Fαβ
α β

−− = =σ . 

 Deviatoric plasticity is controlled by the flow potential Φ , equated here with the 
scalar effective deviatoric stress ( ) ˆ ˆ3/ 2σ = σ :σ : 

ˆ
ˆ
Φλ ∂=
∂

DL
σ

,     ( ) ( ) ( ) ( )0 0 0 01 1 ln ,    ,NA D B p C p TΦ σ λ ε σ⎡ ⎤ ⎡ ⎤= − + + > −⎣ ⎦⎣ ⎦ σ

D

  (19) 

where  for stresses exceeding the elastic limit,  is the deviatoric stress tensor.  
Material parameters from ref. [4] include 

2 ˆ ˆ3 2λ = DL : L σ̂
A , B , C , N , 0ε , and 0σ , and T  is defined as 

0/p σ− , with p  the tensile pressure at failure.   An isotropic inelastic response is assumed 
such that the inelastic spin may be neglected, meaning T=D DL L .  Note also that  

 when elastic shape changes are small.  A 2D slice of the yield surface from (20) 
is shown in Fig. 2 for the particular case where 

1−≈D D DL F F
0Φ = σ , where 1σ  and 2σ  are principle 

Cauchy stresses, and the third principle stress 3 0σ = .   
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           Fig. 1.  Deformations and configurations.             Fig. 2.  HJC yield surface (2D). 

 
  
The following kinetic equations dictate porosity and damage evolution: 

 
( )
( )0

0           ; ,
ˆ /   

C L

C L

p p p p
p p p p

ϕ
α σ
⎧ ≤ ≥⎪= ⎨ < <⎪⎩ ,

        ( ) 1
0 0ˆ 1 ,DD p T pκλ π σ σ−= − + −  (20) 

where α̂ , , and κ̂ Dπ  are positive constants, and the notation 2 x x x= + .  The pressure at 
which inelastic crushing commences is labeled Cp , and the locking pressure corresponding to 

Lϕ  is denoted as Lp .  Note that both ϕ  and  are always positive, i.e., irreversible. D
 The model is next demonstrated to be thermodynamically consistent.  From (13)-(15), 

 
2

1 1ˆ ˆ
2

E E C C

E

KJ G J
D K

ωψρ − −∂
− = +

∂
E EE : E , (21) 

 ( )1 2 2 2
0 1 2 3/ 2 / 2 / 3 / 4 / .E

E E L E E E LJ K K K Kψρ ρ ψ ϑ ϕ ϑ ϑ ϑ
ϕ

−∂ ⎡ ⎤− = + − + +⎣ ⎦∂
ϕ  (22) 

Returning to (11), enforce the stronger requirements 

 ˆ: 0
1

pD
D
ψ ψρ ρ ϕ

ϕ ϕ
⎛ ⎞∂ ∂

− + − ≥⎜ ⎟∂ + ∂⎝ ⎠
Dσ L 0,                θ∂ ≥xqi . (23) −

Then from (19) and (20), 

 ˆˆ ˆ ˆ ˆ 0
ˆ 2
Φ λλ

σ
∂

= =
∂

Dσ : L σ : σ :σ
σ

≥ , (24)

( ) ( )
2

2 1
0 0

ˆ ˆ ˆ 1 0
2 2
LE C C

E E D
L E

KJ D K G p T p
D K

ϕ ϕ ωψρ ϑ κλ π σ
ϕ

−−⎡ ⎤∂ ⎡ ⎤− = + + − + −⎢ ⎥ ⎣ ⎦∂ ⎣ ⎦
E EE : E ,σ ≥

(25) 

meaning that the kinetic relations (19) and (20) are consistent with the laws of 
thermodynamics (23).  Upon consideration of (22), the following constraint follows in terms 
of the pressure, since 0ϕ ≥  from (20): 
 

 ( )( )2
1 2 31 / 2 / 3 / 4E 2

L L E EJ p K K K Eϕ ϕ ϑ ϑ≥ + + + ϑ . (26) 

Material parameters are selected so (26) is satisfied over the model's range of applicability.   
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3. FRAGMENTATION 

 Two approaches for predicting fragment size and velocity statistics are derived in 
what follows.  The first method, termed the 'energetic approach', relies on a local energy 
balance to determine the mean size and number of fragment(s) associated with each local 
volume element (e.g., a finite element, computational cell, or particle in a numerical context). 
The local velocity of that volume element is then assigned to all fragments.  The second 
method, termed the 'statistical physics approach', is based upon maximization of a global 
statistical entropy function subject to constraints on conservation of mass, energy, and 
momentum.  The premise of the latter method is that the most chaotic distribution consistent 
with the fundamental laws of mechanics and thermodynamics is deemed most favorable.  
Though not pursued here, the latter stochastic method could be used in conjunction with the 
energetic approach for describing subscale fragment distributions smaller than the grid size. 
 
3.1 Energetic approach 

 Fragmentation of the local material element takes place over a time increment 
beginning when the damage reaches a threshold value, TD D= .  The energy released per unit 
volume over this time period due to internal micro-cracking is, from (15),  
 

 (
2 2

2 2
T

D
C C C C )D T

E ED

K Ke dD D
K K
ω ωρ = =∫ D− . (27) 

During the fragmentation event, the material retains all energy apart from De , which may be 
stored or dissipated as heat.  Prior to fragmentation, energy released via  contributes to 
dissipation and temperature rise through (12); then, upon 

Γ
TD D= , sufficient gaps between 

micro-cracks are assumed to have developed such that this energy is contributes to the 
relative kinetic energy of fragments.  The energy transfer from the bulk constitutive model to 
fragment expansion then follows as 
 

 ( )1 /
T

D D D
Me l sΜ d u u dρ Γ−

≥
= = + t∑ , (28) 

where M is the total mass of the volume element, and  and lu su  denote absolute energy of 
the volume due to contributions from the relative linear and spin momentum per fragment.  
The progression of damage and fragmentation is illustrated in Fig. 3.    
 

 
 

Fig. 3.  Damage evolution and fragmentation processes. 
 

For cube-shaped fragments with linear edge dimension b, energies in (28) can be estimated as 
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 ,                        , (29) 5 2 /16lu b ρε= 5 2 /12su b ρφ=

where the scalar strain rate in the fragment isε = D : D , with D the symmetric part of L, and 
φ  is the rate of rotation of the fragment about its moment of inertia.  Derivation of the first of 
(29) follows that in [10].  Combining (28) and (29), 
 

 ( ) (3 5 2 5/16 /12D
db e b b
dt

ρ ρε= +∑ ∑ )2ρφ . (30) 

 
Upon assuming equal and constant mass density among N fragments, replacing b with a 
median effective length ( ) 13b Nρ −= M , (30) is integrated to yield 
 

 ( ) ( ) 12 2 / 8 / 6C C T Eb K D D Kω ρ ε φ 2 −
⎡ ⎤= − +⎣ ⎦ . (31) 

Equation (31) produces the mean fragment dimension b . Mass conservation then provides 
the local number of fragments ( )3/N M bρ= .   
 
3.2 Statistical physics approach 

 Here, the entire fragmenting body is considered at once, i.e., globally.  The mass 
distribution is predicted via entropy maximization, subject to the constraints that the total 
mass and total number of fragments are known, following [11].  The constraints are written 
as 

 3 3M b Nbρ ρ= =∑ , (32) 

where the mass density ρ  is assumed the same among all fragments and the linear velocity 
does not affect the mass distribution.   Quantities M and b  are determined from mass 
conservation and a global application of the preceding energetic analysis, respectively.  The 
statistical entropy associated with the mass distribution is given by lnM BS k P= , where  is 
Boltzmann's constant and P is the number of conceivable fragment arrangements.  The value 
of 

Bk

MS  is maximized via maximization of the quantity [17] 

 , (33) 
0

ln ln ln
j

i
i

P N N n n
=

= −∑ i

iwhere  is the number of fragments of mass in i im m m mδ≤ < + , with imδ  describing the 
range of masses admitted in each bin i, where j spans the total number of bins.  Constraints 
(32) are rewritten as 

 
0

j

i
i

N
=

= n∑ ,              
0

j

i
i

M m
=

= ∑ . (34) 

Introducing Lagrange multipliers α  and β , an equivalent function ( )if n  is defined as 

 ( ) ( )ln i if P N n M mα β= + − + −∑ ∑ , (35) 

maximized by the solution of 
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 ( )1 ln 0i
i

f n m
n

α β∂
i= − + − − =

∂
. (36) 

With the notation change 1α α+ → , (36) yields 

 ( )expi in mα β= − − .   (37) 

Rewriting (34) as integrals of continuous functions [11] gives 

 ( ) ( )
0 0

exp exp /N ndm m dmα β
∞ ∞

= = − − = −∫ ∫ α β , (38) 

 ( ) ( ) 2

0 0

exp exp /M mndm m m dmα β
∞ ∞

= = − − = −∫ ∫ α β . (39) 

Finally, the mass probability distribution function (37) becomes 

 ( ) ( ) ( )2ˆ / exp /i i in m n N M Nm M= = − . (40) 

The cumulative probability distribution of fragments larger than m is then  

 ( ) ( )0 0ˆ / expn m N N N m= − , (41) 
where .  Cumulative distribution (41) is shown in normalized form in Fig. 4(a). 0N M N=
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Fig. 4.  Cumulative mass distribution (a) and velocity probability distribution (b), statistical physics model. 

  
 Analogously, the measure of statistical entropy of the fragment velocity distribution is 

, attaining its greatest value upon maximization of  lnV BS k W=

 , (42) 
0

ln ln ln
j

i
i

W N N n n
=

= −∑ i

i where  is the number of fragments with kinetic energy in i ie e e eδ≤ < + , with ieδ  
describing the range of energies admitted in each bin i.  Constraints on the fragment velocity 
distribution are  

 
0

j

i
i

N
=

= n∑ ,            
0

j

i
i

E e
=

= ∑ , (43) 

 
with E  the total kinetic energy of the fragment cloud that will be determined later.  Applying 
an analogous procedure as in (35)-(37), the velocity distribution takes the form 
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 ( )expin ieα β= − − , (44) 

where Lagrange multipliers α  and β  are determined as follows.  Let 
 

 1/ 3 / 2Bk T N Eβ = = , (45) 

where T is a thermodynamic temperature, via analogy with rigid molecules [17].  Assume 
that in ballistic scenarios the fragment velocity is coaxial with that of the center of mass of 
the fragment cloud, such that .  Then the velocity distribution may be expressed as 22 i ie m v= i

 
 ( ) ( )2ˆ exp 3 / 4i in v A Nm v E= − i , (46) 

with ( )expA α= −  determined by normalization: 

 ( ) ( )2

0 0

ˆ1 exp 3 / 4 in v dv A Nmv E dv A E mNπ
∞ ∞

= = − =∫ ∫ / 3 , (47) 

giving 
 ( ) ( )2ˆ 3 / exp 3 / 4n v mN E Nmv Eπ= − . (48) 

 The form (48) differs from that obtained by Grady & Winfree [12], who assumed fragments 
may scatter randomly in all directions, yielding 3D Maxwell-Boltzmann type velocity 
statistics.  In the ballistic events simulated later, the flying debris tend to follow a path closer 
to one-dimensional than 3D or radial.  Velocity probability distribution (48) is shown in 
normalized form in Fig. 4(b). 
 The joint probability distribution of mass and velocity is derived by combining (43) 
and (48): 

 ( ) ( ) ( )
5

2
2

3ˆ ˆ ˆ, exp
4

mN N N3p m v n m n v m v
EM M Eπ

⎡ ⎤⎛= = − +⎜
⎞
⎟⎢ ⎥⎝ ⎠⎣ ⎦

. (49) 

Then,  

 ( ) ( ) ( )
0 0 0 0

ˆ ˆ ˆ, /p m v mvdmdv mn m n v vdv dm EM
∞ ∞ ∞ ∞⎛ ⎞

= ⎜ ⎟
⎝ ⎠

∫ ∫ ∫ ∫ 3= . (50) 

 
Identifying (50) with the linear momentum of the fragment distribution, conservation of 
linear momentum dictates that the energy partitioned to the velocity distribution is  
 

 33E b Nvρ= 2 . (51) 

Note that the expansion energy of (27) does not contribute to the velocity distribution because 
this energy is consumed by the strain and rotation rates of the fragments as indicated in (30).   
 
4.  CONCRETE: PARAMETERS AND IMPLEMENTATION 

 The preceding constitutive theory was applied to describe a concrete of unconfined 
compressive strength 48 MPa (7 ksi), as studied previously in [1, 4].  The fully crushed 
material is assumed to behave like the aggregate at high pressures, following Holmquist et al. 
[4].  Constants , , and , describing the volumetric elastic response of the fully 
crushed material, were determined by fitting the pressure-volume response of (17) to the 

1K 2K 3K
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shock Hugoniot data for granite [18], assuming volumetric elastic deformation of the form 
( )1 χ= −EF 1 .  Porosity evolution parameter α̂  was found via linear interpolation, i.e., 

(0ˆ /L L )Cp pα ϕ σ= − .  Thermodynamic admissibility of porosity evolution, from (26), was 
verified numerically for all 0ϕ > .  
 Fracture toughness CK  was obtained from ref. [19].  Following Sinha et al. [20], 
Hanchak et al. [1], and Holmquist et al. [4], failure occurs ( 1D = ) when the cumulative 
plastic strain 0.0033λ =  under null pressure conditions 0/p 0σ = , giving .  
Similarly, following from data and analysis in the above references, prescribing  when 

ˆ 300κ =
1D =

0.01λ =  under average pressure 0/ 1/p 6σ =  yields 4Dπ = .   
 Maximum crack density Cω  and threshold damage parameter  were chosen based 
on the assumption that the typical fragment size is on the order of the minimum dimension of 
the coarse aggregate of the concrete microstructure, here 9.5 mm.  For cubic fragments, this 
implies an edge length 

TD

b  of 9.5 / 3  mm.   A typical strain rate observed over the duration of 
the fragmentation event was , based upon results of numerical analysis to be 

discussed later.  With these values of 
( )42 10 /sε =

b  and ε , invoking (31) without spin, and assuming 
that fragmentation begins at the partially damaged state characterized by , gives the 
critical micro-crack density .  Though the model functions adequately for 
the present investigation, more experiments and simulations are clearly needed to enable 
unique selection of parameters describing energetics of fracture and fragmentation over a 
range of loading rates, stress states, sample sizes, and concrete microstructures.   

0.5TD =
-11.7(105) mCω =

 The deviatoric stress rate expression was derived by differentiating (16) and assuming 
small elastic stretch:  

 ( ) ( )ˆˆ ˆ ˆ2 1 / 1G D D D= − + − − −E E Eσ D W σ σW σ̂ , (52) 

where  is the symmetric and deviatoric part of  and  is the elastic spin (skew part 
).  The small elastic strain assumption is thought to be justified for concrete deforming in 

shear or tension as yielding and failure of the material should occur prior to the attainment of 
large deviatoric stresses.  At large pressures, the hydrostatic response is integrated in terms of 
the modified total volumetric strain 

ˆ ED EL EW
EL

μ , following the approach in [4]: 
 ( ) ( )/ 1L Lμ μ ϕ ϕ= − + . (53) 

At pressures beneath the locking pressure, (17) is used, whereas a direct cubic fit to the 
Hugoniot data [18] is invoked at high pressures. Possible errors due to linearization of the 
elastic strain propagated from (52) are thus avoided in the hydrostatic response. 
 The energy balance (12) is exercised, along with thermodynamic expressions (22) and 
(25), to update the temperature and internal energy of the material.  The elastic strain 
quantities of (5), and hence the elastic deformation gradient , are needed for this purpose.  
The latter is integrated numerically via [21]: 

ΕF

 
 ( )expt t tt+Δ = ΔE E ΕF L F , (54) 

where  is the time increment of integration.   tΔ
 The following methodology for addressing failure of the material is applied.  When an 
integration point achieves a critical value of damage, 1D = , 'failure' occurs.  Failed material 
supports no deviator stresses or tensile pressure.  Finite elements are converted into particle 
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nodes when a scalar measure of strain, termed the 'erosion strain', is attained [7, 8].  In the 
calculations that follow, the erosion strain is chosen as 0.5, as recommended in [22].     
 Recall that two methods have been developed for predicting fragment mass and 
velocity distributions.  For the approach of Section 3.1, a typical fragment dimension is 
computed for each converted particle using Eq. (31), where the strain rate ε  during the 
fragmentation event is time-averaged only over integration cycles for which .  Each 
fragment is assigned the velocity of its parent particle.  For the statistical physics-based 
approach of 3.2, the total mass and mass-weighted velocity of the particle cloud (see later Eq. 
(56)) are extracted from the simulation output.  The total number of fragments follows from 
assumption of a nominal fragment dimension corresponding to the aggregate size as 
discussed above.  Velocity and mass probability distributions are then calculated in a post-
processing step. 

TD D>

 
5.  BALLISTIC SIMULATION 

 The initial problem geometry is shown in Fig. 5, in which a tungsten sphere impacts a 
concrete plate at a normal striking velocity of 1120 m/s.  Two meshes were considered, a 
coarse grid with 102144 composite tetrahedral elements [22] and a fine grid with 244512 
elements.  The analysis was conducted over 150 sμ .  Contact between projectile and target 
was assumed frictionless in the calculations.  The alloy of the spherical projectile was 
modeled using the plasticity formulation of Johnson & Cook [5] with a Mie-Gruneisen 
equation-of-state for hydrostatics [22].  Failure of the tungsten material was suppressed. 
 

          
   (a)     (b) 

Fig. 5.  Ballistic problem:  coarse mesh (a) and fine mesh (b). 
 
  Results from the two simulations are compared quantitatively in Table 1.  The hole 
diameter was estimated from the visible perforation.  The crater diameter was estimated from 
the region surrounding the perforation where the material was fully damaged, i.e., where 

.  Presumably such fully damaged material would simply fall off the target after the 
impact event due to gravimetric force, leaving behind a crater.  The mass loss in the 
simulation was found from 

1D ≈

 LM DdVρ= ∫ ,        (55) 

where the domain of integration in (55) is the volume of target material.  Eroded mass M 
reported in Table 1 was calculated as the summed mass of all particle nodes. The average 
velocity magnitude of the fragment cloud was computed by     
 

     1
k k

k
v M m v−= ∑ ,          (56) 
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with the velocity  of each particle k weighed by that particle's mass . kv km
 
 
 

   
Table 1.  Numerical results. 

 

 
 

 
 
 
 
 

 
 
 

 
 

Fig. 6.  Simulation at 150 μs.  Particles scaled by 
fragment diameter and colored by velocity magnitude.  
Target elements colored by damage D. 

 
 The coarse-meshed simulation, 150 sμ  after impact, is shown in Fig. 6.  
Corresponding results for the fine mesh were similar and are not shown.  Concrete particles 
are scaled visually by the nominal fragment diameter b , as computed from (32), assuming 

.  Particles are colored by velocity magnitude.  The projectile's exit velocity exceeds 
that of most of the particles.  Larger fragments are slower-moving and remain close to the 
target, with smaller, faster-moving fragments in some cases outpacing the projectile.  
Contours of damage D are shown in the elements comprising target concrete material.  The 
most damaged concrete logically surrounds the perforation, though the damage pattern is not 
purely axi-symmetric.   

0φ =

 Mass probability distributions for the fragment cloud are shown in Fig. 7(a).  The 
distributions were computed in two different ways: the energetic theory of 3.1 and the 
statistical physics-based theory of 3.2.  For the former, the mass of fragments comprising a 
particle k was found from (31) as  

 ( ) 3/ 22

1/3 28
C C T

k
E k

K D D
m

K
ω

ρ ε
⎡ ⎤−

= ⎢ ⎥
⎣ ⎦

. (57) 

Distributions were then constructed by grouping fragments into bins organized by mass: 

 ( ) 1
1 2 j

j
p m m m M m−< < = ∑ , (58) 

where j includes fragments with masses in the range 1m m m

 Model, 
coarse 
mesh 

Model,  
fine 
mesh 

Penetrator  
RV  [m/s] 

814 825 

Hole 
diameter [mm] 

25 26 

Crater  
diameter [mm] 

52 50 

Mass loss  
LM  [kg] 

0.134 0.123 

Eroded mass  
M [kg] 

0.014 0.014 

Avg. fragment 
speed v [m/s] 

133 116 

2< < .  Probability distributions 
for the statistical theory were found from integrating Eq. (49) as follows: 
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 ( ) ( )
22

1 1

1 2
0

1 1ˆ , exp
mm

m m

m Np m m m mp m v dvdm m
M M N

∞ −⎛ ⎞ ⎛< < = = − +⎜ ⎟ ⎜
⎝ ⎠ ⎝∫ ∫ M

⎞
⎟
⎠

. (59) 

Minor differences in mass distributions among simulations with coarse and fine meshes are 
predicted by the energetic theory, a few percent at most for any bin.   Since an identical value 
of eroded mass M was found in both simulations (Table 1), the statistical theory predictions 
were identical for coarse and fine grids. 

Velocity probability distributions are shown in Fig. 7(b). For the energetic theory, the 
magnitude of mass-weighted velocity probability for any particular bin was found from 

 
 ( ) 1

1 2 k
k

p v v v M m−< < = ∑ , (60) 

where k identifies a particle with velocity in the range 1v v v2< < , with mass .  For the 
statistical physics-based theory, the center of mass velocity 

km
v of (56) and Table 1 was 

substituted into (51) to compute the global kinetic energy E.  The probability was then 
estimated from (49) as   

 ( ) ( ) ( )
2 2

11

1 2
1 2

0

ˆ , 3 / 4 / / 3 / 4
v v

vv

p v v v N p m v dmdv N E v N M Nv E
∞

−< < = = +∫ ∫ . (61) 

Figure 7(b) shows the predicted mass fraction of fragments within a particular velocity range.  
The bin of lowest velocities, with range 0   100 m/sv< < , was predicted, for both methods 
and both meshes, to contain the largest mass fraction of fragments. 

m2 [kg]

1e-7 1e-6 1e-5 1e-4 1e-3 1e-2 1e-1 1e+0

p 
(m

1<
m

<m
2)

0.0

0.2

0.4

0.6

0.8
Energetic theory, coarse grid
Energetic theory, fine grid
Statistical theory, coarse grid
Statistical theory, fine grid

+

     v2 [m/s]

0 200 400 600 800 1000

p 
(v

1<
v<

v 2
)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Energetic theory, coarse grid
Energetic theory, fine grid
Statistical theory, coarse grid
Statistical theory, fine grid

+

 
(a)       (b) 

It is suggested that fragment kinetic 
energy may be of importance with regard to 
human lethality from exposure to the flying 
debris.  Kinetic energy distributions are 
shown in Fig. 7(c), where ( )1 2p e e e< <  is 
the mass-weighted probability of a fragment i 
having a kinetic energy  in the 
range .  Distributions were found 
with the energetic and statistical methods 
analogous to those discussed above for mass 
and velocity.  Note that dependence on mesh 
density is exacerbated by the squaring of 
velocity in the kinetic energy computation. 

2 / 2i i ie m v=

1e e e< <

e2 [J]

10 100 1000

p 
(e

1<
e<

e 2
)

0.0

0.2

0.6

0.8

1.0

Energetic theory, coarse grid
Energetic theory, fine grid
Statistical theory, coarse grid
Statistical theory, fine grid

 

2

(c) 
       Fig. 7.  Predicted fragment mass (a), velocity (b), 

and kinetic energy (c) distributions at 150 μs. 
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6. CONCLUSIONS 

 A constitutive framework has been formulated with the following features:  finite 
deformation kinematics of elasticity, plasticity, and pore collapse; thermodynamic 
contributions from nonlinear elasticity, damage, and porosity; and kinetics consistent with 
both the energy balance and entropy inequality. Two thermodynamically motivated methods 
have been derived to compute fragment size and velocity distributions.  The theory was 
implemented in a Lagrangian finite element setting with GPA, and was used to study the 
impact of a metal projectile upon a thin concrete barrier.  Residual projectile velocities, hole 
and crater dimensions, and target mass loss were comparable between two simulations of 
different mesh density.  Fragment debris characteristics appeared realistic, with the largest 
particles usually flying slowest.  Fragment distributions were qualitatively similar among all 
model outputs, with the bin corresponding to the largest mass fraction of fragments having a 
particular mass, velocity, or kinetic energy range the same regardless of method or mesh size.   
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